
    x h                    N    d dl mZ d dlmZ d dlZd dlZddlmZ  G d de      Z	y)    )annotations)AnyN   )TVTensorc                  4    e Zd ZdZdddd	 	 	 	 	 	 	 	 	 ddZy)Maska  :class:`torch.Tensor` subclass for segmentation and detection masks with shape ``[..., H, W]``.

    Args:
        data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as
            well as PIL images.
        dtype (torch.dtype, optional): Desired data type. If omitted, will be inferred from
            ``data``.
        device (torch.device, optional): Desired device. If omitted and ``data`` is a
            :class:`torch.Tensor`, the device is taken from it. Otherwise, the mask is constructed on the CPU.
        requires_grad (bool, optional): Whether autograd should record operations. If omitted and
            ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``.
    Ndtypedevicerequires_gradc                   t        |t        j                  j                        rddlm} |j                  |      }| j                  ||||      }|j                  |       S )Nr   )
functionalr	   )
isinstancePILImagetorchvision.transforms.v2r   pil_to_tensor
_to_tensoras_subclass)clsdatar
   r   r   Ftensors          x/home/developers/rajanand/mypropertyqr-fmb-refixing-v2/venv/lib/python3.12/site-packages/torchvision/tv_tensors/_mask.py__new__zMask.__new__   sO     dCIIOO,A??4(DE&P]^!!#&&    )
r   r   r
   ztorch.dtype | Noner   ztorch.device | str | int | Noner   zbool | Nonereturnr   )__name__
__module____qualname____doc__r    r   r   r   r      sG    " %)26%)'' "	'
 0' #' 
'r   r   )

__future__r   typingr   	PIL.Imager   torch
_tv_tensorr   r   r"   r   r   <module>r(      s     "     '8 'r   